|
knncolle_kmknn
KMKNN in knncolle
|
Options for KmknnBuilder construction.
More...
#include <Kmknn.hpp>
Public Attributes | |
| double | power = 0.5 |
| std::shared_ptr< kmeans::Initialize< KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_ > > | initialize_algorithm |
| std::shared_ptr< kmeans::Refine< KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_ > > | refine_algorithm |
Options for KmknnBuilder construction.
This can also be created via the KmknnBuilder::Options typedef, which ensures consistency with the template parameters used in KmknnBuilder.
| Index_ | Integer type for the observation indices. |
| Data_ | Numeric type for the input and query data. |
| Distance_ | Floating-point type for the distances. |
| KmeansIndex_ | Integer type of the observation indices for kmeans. |
| KmeansData_ | Numeric type of the input data for kmeans. |
| KmeansCluster_ | Integer type of the cluster identities for kmeans. |
| KmeansFloat_ | Floating-point type of the cluster centroids. |
| KmeansMatrix_ | Class of the input data matrix for kmeans. This should satisfy the kmeans::Matrix interface, most typically a kmeans::SimpleMatrix. (Note that this is a different class from the knncolle::Matrix interface!) |
| std::shared_ptr<kmeans::Initialize<KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_> > knncolle_kmknn::KmknnOptions< Index_, Data_, Distance_, KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_ >::initialize_algorithm |
Initialization method for k-means clustering. If NULL, defaults to kmeans::InitializeKmeanspp.
| double knncolle_kmknn::KmknnOptions< Index_, Data_, Distance_, KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_ >::power = 0.5 |
Power of the number of observations, to define the number of cluster centers. By default, a square root is performed.
| std::shared_ptr<kmeans::Refine<KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_> > knncolle_kmknn::KmknnOptions< Index_, Data_, Distance_, KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_ >::refine_algorithm |
Refinement method for k-means clustering. If NULL, defaults to kmeans::RefineHartiganWong.