knncolle_kmknn
KMKNN in knncolle
Loading...
Searching...
No Matches
knncolle_kmknn::KmknnOptions< Index_, Data_, Distance_, KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_ > Struct Template Reference

Options for KmknnBuilder construction. More...

#include <Kmknn.hpp>

Public Attributes

double power = 0.5
 
std::shared_ptr< kmeans::Initialize< KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_ > > initialize_algorithm
 
std::shared_ptr< kmeans::Refine< KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_ > > refine_algorithm
 

Detailed Description

template<typename Index_, typename Data_, typename Distance_, typename KmeansIndex_ = Index_, typename KmeansData_ = Data_, typename KmeansCluster_ = Index_, typename KmeansFloat_ = Distance_, class KmeansMatrix_ = kmeans::SimpleMatrix<KmeansIndex_, KmeansData_>>
struct knncolle_kmknn::KmknnOptions< Index_, Data_, Distance_, KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_ >

Options for KmknnBuilder construction.

This can also be created via the KmknnBuilder::Options typedef, which ensures consistency with the template parameters used in KmknnBuilder.

Template Parameters
Index_Integer type for the observation indices.
Data_Numeric type for the input and query data.
Distance_Floating-point type for the distances.
KmeansIndex_Integer type of the observation indices for kmeans.
KmeansData_Numeric type of the input data for kmeans.
KmeansCluster_Integer type of the cluster identities for kmeans.
KmeansFloat_Floating-point type of the cluster centroids.
KmeansMatrix_Class of the input data matrix for kmeans. This should satisfy the kmeans::Matrix interface, most typically a kmeans::SimpleMatrix. (Note that this is a different class from the knncolle::Matrix interface!)

Member Data Documentation

◆ initialize_algorithm

template<typename Index_ , typename Data_ , typename Distance_ , typename KmeansIndex_ = Index_, typename KmeansData_ = Data_, typename KmeansCluster_ = Index_, typename KmeansFloat_ = Distance_, class KmeansMatrix_ = kmeans::SimpleMatrix<KmeansIndex_, KmeansData_>>
std::shared_ptr<kmeans::Initialize<KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_> > knncolle_kmknn::KmknnOptions< Index_, Data_, Distance_, KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_ >::initialize_algorithm

Initialization method for k-means clustering. If NULL, defaults to kmeans::InitializeKmeanspp.

◆ power

template<typename Index_ , typename Data_ , typename Distance_ , typename KmeansIndex_ = Index_, typename KmeansData_ = Data_, typename KmeansCluster_ = Index_, typename KmeansFloat_ = Distance_, class KmeansMatrix_ = kmeans::SimpleMatrix<KmeansIndex_, KmeansData_>>
double knncolle_kmknn::KmknnOptions< Index_, Data_, Distance_, KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_ >::power = 0.5

Power of the number of observations, to define the number of cluster centers. By default, a square root is performed.

◆ refine_algorithm

template<typename Index_ , typename Data_ , typename Distance_ , typename KmeansIndex_ = Index_, typename KmeansData_ = Data_, typename KmeansCluster_ = Index_, typename KmeansFloat_ = Distance_, class KmeansMatrix_ = kmeans::SimpleMatrix<KmeansIndex_, KmeansData_>>
std::shared_ptr<kmeans::Refine<KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_> > knncolle_kmknn::KmknnOptions< Index_, Data_, Distance_, KmeansIndex_, KmeansData_, KmeansCluster_, KmeansFloat_, KmeansMatrix_ >::refine_algorithm

Refinement method for k-means clustering. If NULL, defaults to kmeans::RefineHartiganWong.


The documentation for this struct was generated from the following file: